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We study electrically charged, dilaton black holes, which possess infinitesimal angular
momentum in the presence of one or two Liouville type potentials. These solutions
are neither asymptotically flat nor (anti)-de Sitter. Some properties of the solutions are
discussed.
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1. INTRODUCTION

Recently, non-asymptotically flat black hole spacetimes have been of much
interest in the framework of AdS/CFT correspondence. Black hole spacetimes
which are neither asymptotically flat nor dS/AdS have been found and investi-
gated by many authors. The first uncharged solutions were found by Mignemi
and Wiltshire (1989), Wiltshire (1991) and Mignemi and Wiltshire (1992). Global
properties of the Einstein-Maxwell-dilaton (EMd) gravity with a Liouville poten-
tial were first obtained and discussed by Poletti and Wiltshire (1994, 1995). Static,
electrically or magnetically charged, non-asymptotically flat, non-dS/AdS black
holes in various dimensions were also found and discussed in (Cai and Wang,
2004). The exact static and spherically symmetric solutions of the electrically or
magnetically charged dilaton black holes in n dimensions in the presence of one
and two Liouville type potentials and with unusual asymptotics (neither flat nor
(anti) de Sitter) were introduced by Chan et al. (1995).

The exact solutions mentioned above are all static. Recently, magnetic, rotat-
ing solutions in four dimensional Einstein-Maxwell-dilaton gravity with Liouville-
type potential has been constructed by Dehghani (2005). These solutions are not
black holes, and present spacetimes with conic singularity. Electrically charged
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rotating dilaton black strings were also obtained and discussed in (Dehghani and
Farhangkhah, 2005). Till now, charged rotating dilaton black hole solutions for an
arbitrary coupling constant have not been constructed. Indeed, exact solution for
a rotating black hole with a special dilaton coupling was derived using the inverse
scattering method (Belinsky and Ruffini, 1980). For general dilaton coupling, the
properties of asymptotically flat charged dilaton black holes only with infinitesimal
angular momentum (Horne and Horowitz, 1992; Shiraishi,1992) or small charge
Casadio et al. (1997) have been investigated. Stationary rotating black holes in
SU (2) Einstein-Yang-Mills theory, coupled to a dilaton considered by Kleihaus
et al. (2004). These black holes possess non-trivial non-Abelian electric and mag-
netic fields outside their regular event horizon. Some classes of solutions of non
asymptotically flat, non AdS/dS charged dilaton black holes with infinitesimal
small angular momentum, and with one Liouville type potential, were also dis-
cussed by Ghosh and Mitra (2003). In this paper, we present electrically charged,
dilaton black holes, for an arbitrary value of coupling constant with infinitesimal
angular momentum. We consider three cases: without potential, with one Liou-
ville type potential and two Liouville type potential. These solutions are neither
asymptotically flat nor AdS/dS.

The organization of this paper is as follows: After introducing the general
equations of motion, we present and discuss rotating dilaton black holes without
potential. In section 4, we present two classes of rotating solutions with a Liouville
type potential and general dilaton coupling. In section 5, we generalized these
rotating solutions for the case of two Liouville potentials. The last section is
devoted to some concluding remarks.

2. FIELD EQUATIONS

We consider the four-dimensional action in which gravity is coupled to dilaton
and Maxwell fields with an action

S =
∫

d4x
√−g

[
R − 2(∇φ)2 − V (φ) − e−2αφFµνFµν

]
(1)

where R is the Ricci scalar curvature and φ is the dilaton field and V (φ) is a
potential for φ. The equations of motion can be obtained by varying the action (1)
with respect to the gauge field Aµ, the metric gµν and the dilaton field φ which
yields the following field equations

Rµν = 2∂µφ∂νφ + 1

2
gµνV (φ) + 2e−2αφ

(
FµηF

η
ν − 1

4
gµνFληF

λη

)
, (2)

∂µ(
√−ge−2αφFµν) = 0, (3)

∇µ∇µφ = 1

4

∂V

∂φ
− α

2
e−2αφFληF

λη. (4)
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We wish to find rotating solutions of the above field equations. For infinites-
imal angular momentum, we can take the metric of the form

ds2 = −U (r)dt2 + dr2

U (r)
+ R2(r)(dθ2 + sin2 θdϕ2) − 2af (r) sin2 θ dt dϕ.

(5)
Here, a is an angular momentum parameter and f (r) is a function to be deter-
mined. Note that, in the particular case a = 0, this metric reduces to the static and
spherically symmetric case. For small a, we except to have solutions with U (r)
still a function of r alone.

First of all, the t component of the Maxwell equation can be integrated
immediately to give

F rt = qe2αφ

R2
, (6)

where q, is the electric charge. In general, in the presence of rotation, there is a
vector potential

Aϕ = aqh(r) sin2 θ. (7)

With the metric (5) and Maxwell fields (6) and (7), the field equations reduce
to the following system of coupled ordinary differential equations

1

R2

d

dr

(
R2U

dφ

dr

)
= 1

4

dV

dφ
+ αe2αφ q2

R4
, (8)

1

R

d2R

dr2
+

(
dφ

dr

)2

= 0, (9)

1

R2

d

dr

(
U

dR2

dr

)
= 2

R2
− V (φ) − 2e2αφ q2

R4
(10)

R4 d2U

dr2
− 2R2U

(
dR

dr

)2

− 2R3U

(
d2R

dr2

)
+ 2R2 − 4q2e2αφ = 0, (11)

In addition, we have two coupled differential equations for arbitrary functions
f (r) and h(r).

R2 d2f

dr2
− 2f

(
dR

dr

)2

− 2f R
d2R

dr2
− 4q2 dh

dr
= 0, (12)

R2 d

dr

(
Ue−2αφ dh

dr

)
− R2 d

dr

(
f

R2

)
− 2he−2αφ = 0, (13)
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These equations which arise from the presence of Aϕ , appear only when a �= 0,
while the other equations were there also in the static, spherically symmetric case.
Static solutions of these equations with unusual asymptotic were given in Chan
et al. (1995).

To solve these equations, we make the ansatz

R(r) = eαφ(r), (14)

Using (14) in equation (9), immediately gives

φ(r) = α

1 + α2
ln(br − c), (15)

where b and c are integration constants. For later convenience, without loss of
generality, we set b = 1 and c = 0.

3. SOLUTIONS WITH V (φ) = 0

We begin by looking for the solutions without Liouville potential (V (φ) = 0).
In this case Equations (8)–(11), gives the following solution

U (r) = r2−2N

(
1 − 2M

Nr

)
, (16)

with N = α2

1+α2 and M is the quasilocal mass (Brown and York, 1993). Note that
the solution is ill defined for α = 0. In order, that this solution satisfy in all field
equations, we should have the following relation for the electric charge:

q2 = 1

1 + α2
, (17)

There is an event horizon at r+ = 2M
N

. In the limit α2 → ∞, the electric
charge vanishes and the metric reduces to the Schwarzschild black hole.

Here we are interested in finding rotating version of these solutions. For
infinitesimal rotation parameter a, we can get a solution of the full set of equations
with U (r), R(r) and φ(r) unaltered and supplemented by the solutions of the new
Equations (12) and (13) for two unknown functions f (r) and h(r). To solve these
equations we try the power relation

h(r) = krm, (18)

where k is a constant. Using this anzats, we can distinguish different solutions:
For m = 0, one obtains the following solutions for f (r):

f1(r) = 2k

4N − 1
r1−2N, (19)

f2(r) = cr2N + f1(r). (20)
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where c is an integration constant. Note that these solutions are ill defined for
α2 = 1

3 and in the case α = 1, f1(r) becomes constant, while f2(r) = cr .
In the particular case k = 0, this solution involves a change of the metric

from the non-rotating form without any change of the Maxwell field and follows
from the general structure of the new equations for f (r) and h(r). This may be
surprising at first sight because a rotation enters the metric without any rotation in
the charge; this is possible because the function f (r) does not obey conventional
boundary conditions for large r and in fact increases with r .

In the large α limit, from (17) we have q2 = 0. For f (r), one obtains

f (r) = −2kmMrm + cr2, (21)

with c constant and m = −1, 2. This is similar to the slowly rotating Kerr black
hole. The corresponding static case is the Schwarzschild black hole.

In addition, there are asymptotic solutions such as

f (r) = r2N

(
c + 4kq2

γ
rγ

)
, (22)

with γ = m + 1 − 4N and c is a constant. In this case, α is related to m via

α2 = m2 + m − 6

3m − m2 + 2
. (23)

Note that this solution is ill defined for γ = 0 or α2 = m+1
3−m

.

4. SOLUTION WITH A LIOUVILLE TYPE POTENTIAL

In this section, we consider the action (1) with a Liouville type potential,

V (φ) = 2
e2βφ, (24)

where 
 and β are constants. In this case, Equations (8)–(11) admit two classes
of solutions.

i) For the first class of solutions, we obtain

U (r) = r2−2N

(
1 − 2M

Nr
+ 
(1 + α2)2

α2(1 − 3α2)
r2(2N−1)

)
, (25)

with β = −1
α

. In order, to satisfy this solution in all field equations, the electric
charge should be related to α via Equation (17). Note that the solution is ill
defined for α2 = 1

3 and α = 0. In the limit 
 → 0 the solution reduces to that
with V (φ) = 0. On the other hand, when α2 → ∞ the solution becomes

U (r) = 1 − 2M

r
− 


3
r2, (26)
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which is the Schwarzschild dS/AdS black hole, depending on the sign of 
. In
order to investigate the causal structure of the solution, we must investigate the
zeros of the metric function U (r). In fact, for 0 < r < ∞ the zeros of U (r) are
governed by the function

F (r) = 1 − 2M

Nr
+ 
(1 + α2)2

α2(1 − 3α2)
r2(2N−1). (27)

We investigate the function g(r) = rF (r), for simplicity. The cases with
α2 > 1/3 and α2 < 1/3 should be considered separately. We should also consider
the sign of the parameter 
 in each case. In the first case where α2 < 1/3 and

 < 0 we may have one horizon since dg

dr
> 0. But the more interesting case

happens for 
 > 0 where we obtain only one local minimum at r = rmin where

rmin =
(

α2


(α2 + 1)

) 1
2

α2+1
α2−1

(28)

The function g(r) possesses zeros if g(rmin) ≤ 0. There are two zeros for
g(rmin) < 0 and one degenerate zero for g(rmin) = 0 which corresponds to an
extremal black hole. The condition g(rmin) ≤ 0 gives

M ≥ α2(2 − 3α2)

2(1 + α2)(1 − 3α2)

(
α2


(1 + α2)

) 1
2

α2+1
α2−1

(29)

In the second case where α2 > 1/3 and 
 < 0, the function g(r) increases
monotonically. So we can conclude that there is one point where g(r) = 0 which
is the black hole horizon. For 
 > 0 we find local extremum for the function.
The sign of d2g(r)

d2r
determines weather we have local maximum or minimum. For

α2 > 1 we have local maximum and g(rmax) should be positive in order to have
any horizon. The latter condition gives

M ≤ α2(2 − 3α2)

2(1 + α2)(1 − 3α2)

(
α2


(1 + α2)

) 1
2

α2+1
α2−1

(30)

If we have 1
3 < α2 < 1, then we would have local minimum and in case of

any horizon existing g(rmin) in Equation (28) should be negative which implies
Equation (29). The above considerations show that the solutions describe black
holes with two horizons or an extremal black hole hiding a singularity at the origin
r = 0, when the mass satisfies (29) or (30). The radius of the inner and outer
horizons can not be expressed in a closed analytical form except for the extremal
case. The radius of the extremal solution coincides with rmin

rext = rmin =
(

α2


(α2 + 1)

) 1
2

α2+1
α2−1

= 2(1 + α2)(1 − 3α2)

α2(2 − 3α2)
M (31)
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Unfortunately, because of the nature of the exponents of r in (27), the event
horizon determined by F (r) = 0 can not be expressed in a closed analytical form
for arbitrary α.

In order to obtain the rotating version of this solutions, we must solve Equa-
tions (12) and (13) for the two unknown functions f (r) and h(r). Using the anzats
(18) we can distinguish different solutions:

For m = 0, once again we have solution of the form (19)

f1(r) = 2k

4N − 1
r1−2N, (32)

f2(r) = cr2N + f1(r). (33)

In particular case k = 0, we have unusual solution where there is a change in
the metric from the non-rotating form without any change in the Maxwell field.

In the large α limit, we have a solution for m = −1. In this case, from (17)
we have q2 = 0. For f (r), one obtains

f (r) = 2kM

r
+ 
k

3
r2 + cr2, (34)

with c constant. This is the form for slowly rotating Kerr Ads/ds black hole. The
corresponding static case is the Schwarzschild AdS/dS black hole which present
in (26).

In addition, for α2 < 1 there are asymptotic solutions such as

f (r) = r2N

(
c + 4kq2

γ
rγ

)
, (35)

with γ = m + 1 − 4N and c constant.
For α2 = 1, there exist an exact solutions such as

f (r) = 4kq2

m − 1
rm − 4 kmMrm−1 + cr, (36)

with 
 = m2−m−4
2m(m−1) . Note that for m �= 2 this solution exists only for M = 0. For

m = 0, 1, the solution doesn’t exist since 
 diverges.
ii) For the second class of solutions, we obtain

U (r) = r2−2N

(
1 − 2
 − 2M

Nr

)
, (37)

with β = −α. For the electric charge one obtains

q2 = 1 + 
(α2 − 1)

1 + α2
. (38)

There is an event horizon at r+ = 2M
N(1−2
) which is regular only for 
 < 1

2 .
In the limit 
 → 0 this solution reduces to that with V (φ) = 0. Here we are
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interested in finding the rotating version of this static solution, that is to say, in
solving the corresponding coupled equations for two unknown functions f (r) and
h(r). By the anzats (18) we can distinguish different solutions:

For m = 0, once again we have solution of the form (19). In the large α limit,
and q = 0 we have also solutions as long as

f (r) = −2kmMrm + cr2, (39)

with c constant and 
 = m2−m−4
2m(m−1) . Note that for m �= 2,−1 this solution exist

only for M = 0. For m = 0, 1, the solution doesn’t exist since 
 diverges. For
asymptotic solutions once again we have solutions of the form

f (r) = r2N

(
c + 4kq2

γ
rγ

)
, (40)

with γ = m + 1 − 4N and c constant. In this case, 
 is related to m and α via the


 = (m2 + m − 6) + α2(m2 − 3m − 2)

2(m2 + m − 2) + 2α2(m2 − 3m + 2)
. (41)

For α2 = 1, there exists the following exact solution

f (r) = 4kq2

m − 1
rm − 4kmMrm−1 + cr, (42)

with 
 = m2−m−4
2m(m−1) . Note that for m �= 2 this solution exists only for M = 0. For

m = 0, 1, the solution doesn’t exist since 
 diverges.
For h(r) = r2 + 2M(α2−1)

α2 r and 
 = −α2

2 , one can also find solutions like

f (r) = 2(1 + α2)

(
α2 − 2

α2 − 3
r3−2N + M

α2 − 2

α2
r2−2N + 2M2 1 − α2

α4
r1−2N + cr2N

)
,

(43)
with N = α2

1+α2 and c constant.

5. SOLUTIONS WITH A GENERAL COUPLING PARAMETER AND
TWO LIOUVILLE POTENTIALS

In this section, we present rotating solutions to the EMd gravity equations
with infinitesimal rotation parameter and dilaton potential

V (φ) = 2
1e
2β1φ + 2
2e

2β2φ, (44)

where 
1 and 
2 are constants. This generalizes further the potential (24). If
β1 = β2, then (44) reduces to (24), so we will not repeat these solutions. Requiring
β1 �= β2, from equations (8)–(11), one obtains

U (r) = r2−2N

(
1 − 2
1 − 2M

Nr
+ 
2(1 + α2)2

α2(1 − 3α2)
r2(2N−1)

)
, (45)
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with N = α2

1+α2 and M is the quasilocal mass. In order to fully satisfy the system of
equations, the β1 and β2 parameters must satisfy β1 = 1

β2
= −α. For the electric

charge, one obtains

q2 = 1 + 
1(α2 − 1)

1 + α2
, (46)

Obviously, another solution with the same spacetime metric is generated via
the discrete transformation β1 ←→ β2 and 
1 ←→ 
2.

Note that in the particular case 
2 = 0, this solution reduces to (37) and
when 
1 = 0, it reduces to (25). In order to investigate the causal structure of
the solution and subsequently find the horizons (similar to what was done in the
previous section) we find the zeros of the function

F (r) = −2M

N
+ (1 − 2
1)r + 
2(1 + α2)

α2(1 − 3α2)
r4N−1, (47)

We consider the cases α2 > 1/3 and α2 < 1/3, separately. For the first case,
we certainly have extremum if 
1 > 1/2(
1 < 1/2) or 
2 < 0(
2 > 0). The sign
of the second derivative will show whether we have local minimum or maximum.
Here, for 1/3 < α2 < 1(α2 > 1) and 
2 > 0(
2 < 0) the function f (r) would
have local minimum and in opposite, for 1/3 < α2 < 1(α2 > 1) and 
2 < 0(
2 >

0) the function will have local maximum at

rmin(max) =
(

(1 − 2
1)α2


2(α2 + 1)

) 1
2

α2+1
α2−1

. (48)

The value of the function F (r) at its extremum is

F (rextr) = −2M

N
+ (1 − 2
1)(2 − 3α2)

1 − 3α2

(
(1 − 2
1)α2


2(α2 + 1)

) 1
2

α2+1
α2−1

(49)

In order to have any horizon, F (rmin)(F (rmax)) should be larger(less) than or
equal to zero in order to possess any local extremum and subsequently to have
any horizon for the black hole. The case F (rmin)(F (rmax)) = 0 corresponds to an
extremal black hole. The condition F (rmin) ≤ 0 gives

M ≥ α2(2 − 3α2)(1 − 2
1)

2(1 + α2)(1 − 3α2)

(
(1 − 2
1)α2


2(α2 + 1)

) 1
2

α2+1
α2−1

(50)

and we obtain the following inequality for the condition F (rmax) ≥ 0

M ≤ α2(2 − 3α2)(1 − 2
1)

2(1 + α2)(1 − 3α2)

(
(1 − 2
1)α2


2(α2 + 1)

) 1
2

α2+1
α2−1

. (51)
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For the second case where α2 < 1/3 the function F (r) possesses local mini-
mum for 
2 < 0 and local maximum for 
2 > 0. In this case, the function diverges
both at r = 0 and at infinity. The local minimum (maximum) happens at (48) and
the value of the function F (rmin) is given by (49). Since in this case we have both
a local minimum and maximum, condition (51), should hold for both cases.

We see that in both cases we obtain horizons for any given value of the
parameter α. Here we express the radius of the extremal solution as in the preceding
section

rext =
(

(1 − 2
1)α2


2(α2 + 1)

) 1
2

α2+1
α2−1

= 2(1 + α2)(1 − 3α2)

α2(2 − 3α2)(1 − 2
1)
M (52)

Here, we are interested in finding the rotating version of this static solution,
i.e. solving the corresponding coupled equations for two unknown functions f (r)
and h(r). By the anzats (18) we can distinguish different solutions:

For m = 0, ones again we have solution of the form (19). In particular case
k = 0, we have unusual solution where there is a change in the metric from the
non-rotating form without any change in the Maxwell field also exist as before.

In the large α limit, and q = 0, one obtains

f (r) = −km
2

3
rm+3 − 2kmMrm + cr2. (53)

with m = −1,−4 and 
1 = m2−m−4
2m(m−1) . Note that for m = −4 this solution exists

only for M = 0. For m = −1, the solution exists for M non zero. For asymptotic
solutions once again we have solutions of the form

f (r) = r2N

(
c + 4kq2

γ
rγ

)
. (54)

with γ = m + 1 − 4N and c is a constant. In this case 
 is related to m and α via


1 = (m2 + m − 6) + α2(m2 − 3m − 2)

2(m2 + m − 2) + 2α2(m2 − 3m + 2)
. (55)

For α2 = 1, there exists an exact solution in the form

f (r) = 4kq2

m − 1
rm − 4kmMrm−1 + cr. (56)

In this case, 
2 is related to m and 
1 via


2 = (m2 − m − 4) − 2
1(m2 − m)

2m(m − 1)
. (57)

It is notable that for m �= 2 this solution exists only for M = 0. For m = 0, 1,
the solution doesn’t exist since 
 diverges.



Rotating Solutions of Einstein-Maxwell-Dilaton Gravity with Unusual Asymptotics 2507

6. CONCLUSION

In summary, we considered exact, electrically charged, static and spherically
symmetric black hole solutions to four dimensional Einstein-Maxwell-dilaton
gravity without potential or with one or two Liouville type potentials. These
black holes have unusual asymptotics. They are neither asymptotically flat nor
asymptotically (anti-) de Sitter.

We have added an infinitesimal rotation represented by the parameter a. In
this case we need only to know a few extra components of the gauge field and
the metric. These are Aφ , At and gtφ which are of order a. For small angular
momentum, the field equations led to the coupled differential equations satisfied
by two unknown functions f (r) and h(r), for which we presented several classes
of solutions.
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